Review Article # The significance of collective role of QbD and PAT Tools in the Pharmaceutical Process Automation ### **Parag Das** Oman Pharmaceuticals products Co. LLC., Muscat, Oman Date Received: 8th August 2017; Date accepted: 29th August 2017; Date Published: 5th September 2017 ### Abstract Pharmaceutical industry has always been striving on product Quality, Efficacy and safety and now one step ahead the process automation also under transformation. However at past these attributes were not so much focused or mandatory. In earlier days the traditional quality by testing (QbT) approach was being followed, the product quality and performance are predominantly ensured by end product testing, with limited understanding of the product, process and critical process parameters understanding. In recent days these quality, safety & efficacy of the products are the prime focus, thus the Regulatory bodies are emphasizing on implementing quality by design (QbD) and Process analytical tools (PAT) , the science based approach for better products & process understanding by reducing process variation and the enabling process-control strategies. In this regards, pharmaceutical industry is currently undergoing a significant transformation to streamline their R&D process, provide greater manufacturing flexibility and control, and to reduce regulatory burden. However, till date there is limited understanding and major concerns regarding the implementation of QbD principles and PAT in the pharmaceutical arena. The objective of this article is therefore to provide a comprehensive understanding on various aspects of QbD and PAT, along with addressing the concerns related to its implementation to achieve the pharmaceutical process automation. **Keywords:** Quality by design, PAT, Design of experiment, Pharmaceutical manufacturing, Critical quality attributes, Quality risk management, Design space, Quality target product profile. ### **INTRODUCTION:** For Pharmaceutical dosage form previously concept of Quality determination was by testing only, means from a batch of dosage form little Random quantity of samples will be withdrawn for testing, results will determine the quality of the product. But the quality of each unit dosage is very important in respect to the patient prospects . So Now the recent concept of Quality is 'Quality by design", So that the quality is inbuilt by design. It means the design of Specifications of raw material, packing material, Finished Goods and the Formulation design, Process design, Process Parameters design space etc., are to be considered or designed scientifically by using the relevant and effective scientific tools i.e. DOE to maintain quality by design throughout the product life cycle [1]. The conventional development process uses an empirical approach that requires continuous end product testing and inspection to determine quality. This approach ignores real-world variability in materials and process controls. At present there is a different approach. It's called Quality by Design (QbD). With this QbD approach we can get a proactive approach to product development, have clear evidence and sufficient knowledge and understanding of the process and critical process parameters and control strategy in turn reduces the FDA queries and review time on submitted dossier, and in the product life cycle management in case of any deviation or failure, all these scientific data help to identify the root cause, risk mitigation plan and resolution. The knowledge obtained during development helps to justify the establishment of a design space, (process) control strategy and set point within the (regulatory approved) design space. To provide a full coverage to QbD, the PAT is very important. PAT is an integral part of the QbD in the area of Process Control. In Absence of these two important elements i.e. QbD and PAT the pharmaceutical process Automation is highly impossible. The QbD approach is now fully applicable for the generic drug Development, to achieve it. The regulatory authority always insists to implement the ICH Q 8 to Q11, in the relevant area of each part [1,2]. To address the subject article we need to understand thoroughly both QbD and PAT. ### Why QbD is so important? As per ICH Q8 the Quality by Design (QbD) is a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management. In another word the meaning Quality by Design (QbD) is a modern, scientific approach that formalizes product design, automates manual testing, and streamlines troubleshooting. It uses a systematic approach to ensure quality by developing a thorough understanding of the compatibility of a finished product to all of the components and processes involved in manufacturing that product. Instead of relying on finished product testing alone, QbD provides insights upstream throughout the development process. As a result, a quality issue can be effectively analyzed and its root cause quickly identified. QbD requires identification of all critical formulation attributes and process parameters as well as determining the extent to which any variation can impact the quality of the finished product. The more information generated on the impact - or lacks of impact - of a component or process on a product's quality, safety or efficacy, the more business flexibility Quality by Design provides. [3] The Followings are the different Modules of QbD # Quality Target Product Profile (QTPP) - The product Design: The Quality Target Product Profile (QTPP) identifies all the critical quality attributes (CQA) for the product. Quality Target Product Profile (QTPP) is a prospective summary of the quality characteristics of a drug product that ideally will be achieved to ensure the desired quality, taking into account safety and efficacy of the drug product. The QTPP includes the factors that define the desired product and the CQAs include the product characteristics that have the most impact on the product quality. These provide the framework for the product de- sign and understanding. The components are characterized and the compatibility of the components is evaluated. The quality target product profile forms the basis of design for the development of the product. [4]. ### **Critical Process Parameter (CPP):** A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. CPP will be identified during the product and process development with the help of design of experiments (DOE) [5]. ### **Critical Quality Attributes:** A CQA is a physical, chemical, biological, or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality. CQAs are generally associated with the drug substance, excipients, intermediates (in-process materials) and drug product. CQAs of solid oral dosage forms are typically those aspects affecting product purity, strength, drug release and stability. For drug substances, raw materials and intermediates, the CQAs can additionally include those properties (e.g., particle size distribution, bulk density) that affect drug product CQAs. [4,5]. Critical Material Attribute (CMA) A physical, chemical, biological or microbiological property or characterstic of an input material that should be within an appropriate limit, range or distribution to ensure the desired quality of output material [5] ### **Design Space:** It is defined as the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality. Working within the design space is not considered as a change. Movement out of the design space is considered to be a change and would normally initiate a regulatory post approval change process. Design space is proposed by the applicant and is subject to regulatory assessment and approval. Understanding of processes is the key to defining the design space. Critical process parameters (CPPs) are identified by determining the extent to which any process variation can affect the quality of the product. When design space is known then it is easy to anticipate issues and plan how to control the process. Actual experimental data, product experience, or literature guidance can be used to define the extremes of the parameter sets to be refined [5]. ### Design of experiments (DOE): It is a systematic method to determine the relationship between factors affecting a process and the output of that process. In other words, it is used to find cause-and-effect relationships. This information is needed to manage process inputs in order to optimize the output [5]. ### **Control strategy:** A planned set of controls, derived from current product and process understanding that ensures process performance and product quality. The controls can include parameters and attributes related to drug substance and drug product materials and components, facility and equipment operating conditions, in-process controls, finished product specifications, and the associated methods and frequency of monitoring and control (ICH Q10). Based on the process design space, a well-executed control strategy can be defined. This enables to understand the processes in a way that ensures product quality from known variability of the production process. This disciplined approach will keep the complex production processes under control. One technique to help avoid such a disparity is to conduct a Design of Experiments (DOE) study on the product in the development stage. Considerable wasted effort can be eliminated with such an approach as can any unexpected adverse outcome from the lack of control strategy understanding during the product life cycle management. [5]. ### Quality risk management (QRM) QRM is a systematic process for the identification, assessment, control, communication and review of risks to the quality of the drug product across the product lifecycle. Every product or process has associated risks. Zero risk reduction is not a realistic goal nevertheless protection of patient by managing this risk in the quality system and manufacturing process is being given prime importance in the pharmaceutical in-dustry. [5,6]. ### **Operating Space or Range:** The operating space is the best set of parameters, determined statistically with the help of DOE, which enable to accommodate any natural variability due to input material or process input in CPPs and CQAs. For generic products, the operating space should be within the control space was defined during product development with the help of statistical tool like DOE) and should allow a reference product to be tested with the same set of parameters. For new products, the operating space of range should be within the design space and compliant with regulatory guidelines. Innovators can gain a competitive advantage by thoroughly exploring the design space, including testing multiple batches of formulations to truly refine their product [7]. ### **Process Validation:** As per recent Guidance, The process validation is defined as the collection and evaluation of data, from the process design stage through commercial production, which establishes scientific evidence that a process is capable of consistently delivering quality product. Process validation involves a series of activities taking place over the lifecycle of the product and process. This guidance describes process validation activities in three stages. Stage 1 Process Design: The commercial manufacturing process is defined during this stage based on knowledge gained through development and scale-up activities. Stage 2 – Process Qualification: During this stage, the process design is evaluated to determine if the process is capable of reproducible commercial manufacturing. Stage 3 - Continued Process Verification: Ongoing assurance is gained during routine production that the process remains in a state of control during the product life cycle [7,8]. ### THE CHALLENGES OF ADOPTING QbD: Despite the many financial and operational benefits of QbD, and even with the new FDA recommendations, not all companies have adopted this approach. As the saying goes "you either pay now, or pay later." Implementing QbD beginning at the development phase requires a dedicated, disciplined, and sustained commitment by an organization. Understanding the effort necessary to implement QbD is a key component to successful adop- tion. Some of the most common barriers to adoption include: Insufficient understanding of the process and its benefits, Organizational resistance to change, Denial of the need (Our process is under control), Competing priorities and Lack of resources and expertise in QbD [11]. When you consider the tremendous potential financial gain, faster time to market, process improvements, and quality assurance generated by a successful implementation of QbD, these obstacles seem to pale in comparison [11]. The FDA expects at least these QbD components in all submissions: - Quality target product profile (QTPP) - List of critical quality attributes (CQAs) - List of critical material attributes of drug and excipients (CMAs) - List of critical process parameters (CPPs) - A control strategy that ensures the product reliability meets its predefined objectives. The FDA clearly sees QbD as the way to enhance the quality of drug products for the benefit of everyone involved: Manufacturers will save time and money developing and producing drugs. Regulators will save time and resources approving drug applications, conducting inspections, and trouble-shooting quality issues. Patients will be assured of more consistent, high-quality drug products that always meet safety and efficacy requirements. In the eyes of the FDA and the many advocates of QbD, the approach represents a way to "do more with less" and gain a winning outcome for manufacturers, regulators, and patients. Proper implementation of QbD can potentially provide several benefits for development and manufacturing: - More efficient use of development time and costs. - Ability to meet FDA submission guidelines and expectations. - Reduced approval times and fewer queries –from the FDA. - Rapid response to any manufacturing deviation. The impact of poor development that spirals out of control for the marketed product can be devastating. Fortunately, these costs and delays can be avoided by using QbD, a more modern, scientific approach that formalizes product design and de- velopment and eliminates troubleshooting by trialand-error. Despite the numerous tangible benefits of QbD, most companies do not understand the concept, appreciate its value, or know how to implement it effectively. Successful implementation of QbD requires a dedicated, disciplined, sustained commitment. Additionally, a sense of urgency now exists as the FDA began strongly encouraging all drug product applicants to use QbD. Deficiency letters will now explicitly cite the lack of QbD. QbD is a scientific method to define product and process design during the development stage to produce consistent quality during product life cycle, however in the product life cycle to monitor and control the critical and key process parameters in turn quality of drug product, the role of PAT tools is very important. So it is very obvious to establish the relationship between QbD and PAT tools, especially when we are depending on process automation for quality, safety and efficacy of the product [12,13]. ### Meaning of PAT? It is an Advance tool for designing, analyzing and controlling Pharmaceutical Manufacturing Process through timely measurements (i.e. on line, off line, in line) of Critical Quality and performance attributes for raw and in process Materials & processes with the objective of ensuring the product desired quality. Concept of PAT is based on identification and control of risks during the manufacturing of drug product [14]. ### **Importance of PAT:** It effectively builds quality into products; also eliminate the process variation resultant into process safety. It also helps to understand the manufacturing process and its control in totality [14]. ### **Different levels of PAT Implementation:** Preliminary stage is Capturing of Manufacturing Process Parameters. Scale up stage is Evaluation of process parameters Data. Provisional Stage is Process Understanding. Permanent Stage is Actual process Monitoring and Process control by Implementing PAT Tools [14]. # PAT Analysis is preferred over conventional Laboratory Analysis: Followings are the reason, why PAT is preferred that are Faster or online results are available, which helps to take the decision to release the batches for the consumption, PAT eliminate the Human error, It is safe to product, Human and Environment, It increases the productivity and During analysis sample integrity exists [14,15]. **PAT Applications in Pharmaceutical Process:** | Unit Operation | PAT Tools (On Line) | |--------------------------|-----------------------| | Raw Material Identifica- | Near Infra Red (NIR), | | tion | Raman | | High Shear Wet Granu- | Torque meter, NIR, | | lation process | PARSUM, Accustic | | | Emission, FBRM | | Low shear Wet Granula- | PARSUM, FBRM, NIR | | tion (FBP) | | | Reaction Monitoring | NIR | | Crystallization | FBRM | | Fluidized Bed Drying | NIR | | Mixing, Blending and | NIR | | Lubrication | | | Tablet Compression | NIR | | Coating | Droplet Size measure- | | | ment, NIR | The online PAT tools are having capability to monitor & control the process as per defined parameters; hence such online PAT tools are very helpful for the Process Automation. Therefore if such online PAT tools are employed in the process to monitor the process we can ensure the process control without human interference, which is eventually termed as process automation, for example process are defined as per design space, in the running process due to influence of any factor if the process parameters are deviated from the defined process and if process equipment are looped through the PAT tools then in that case because of vigilance and backward intimation capability of PAT tools to the HMI/PLC, the process parameters will be always within the range of Design Space [15]. For instance let us assume the Pelletization process in Wurster coater, where the bed moisture is very critical requirement for the Pelletization process. At particular bed moisture content only the process will run smooth, or else there will be an occurrence like agglomeration or static charge generation. In this particular case the NIR can be employed as one of the effective PAT tools , where NIR will measure the pellet bed moisture online and will inter link with control measure for the moisture like Inlet temperature , Inlet air flow , Spray rate etc as electronic backward intimation and control the desired the bed moisture content . Thus the PAT tools play a very critical role in process automation [15]. ### **PAT Tools – Off line:** Powder Flow Meter parameter is used to characterize the Powder physical properties like Flow Rate and Angle of repose. Powder Rheometer parameter is used to characterize the Powder physical Properties and measures the Energy and force like Basic flow energy, Aeration Energy, Permeability Energy, Compressibility, Shear Cell force, Wall friction force and Stability energy [15,16]. ## THE BENEFITS OF QbD and PAT: A. QbD: Proper implementation of QbD can potentially provide three main benefits for development that are more efficient use of development time and costs, ability to meet FDA submission guidelines and expectations and reduced approval times and fewer queries from the FDA [7]. Likewise, QbD can potentially provide significant benefit in manufacturing. Even after the drug has gained FDA approval, during product life cycle in routine QC testing may detect an out of specification (OOS) result. However it is very easy to address the OOS & have effective CAPA in presence of sufficient QbD data. But for a company that did not use a QbD approach, an OOS result can mean a seemingly endless quest to find the root cause. Absent the data that QbD provides, test results may be suspected, the questions difficult to answer, and long delays inevitable. Without knowing where to look, the team may resort to a trial-and-error approach to resolve any OOS occurrences [8]. Even that could cause a 4- to 9-fold increase in testing to clear up an OOS investigation – a costly affair and time-consuming prospect in commercial scale. The impact of poor quality development work that spirals out of control into an OOS event during product life cycle can be horrendous [9]. For manufacturers, there are potentially huge external costs for delayed product launches or approvals, or severe actions such as consent decrees, the internal costs of wasted raw materials, scrap batches, and the cost of investigation and remediation [9]. Importantly the damage to the brand such an event would have. To add further insult, the company may have to spend an enormous amount of money just to get your product back to market, and overall business loss and reputation at stake [9]. QbD minimizes these risks by mapping all the possible variables of the product attributes and processes into a known control space. This means that if any quality issues occur, the scientific team can use specific methods to quickly pinpoint the scientific variables that are most likely causing the issues [10]. The business benefits can be significant, including; fewer lost batches, resulting into revenue, market share & Business loss. Fewer manufacturing deviations, saving hundreds of costly hours. Faster time to market and more reliable supply, when each day on the market could generate the revenue. Fewer inspections of manufacturing sites. A many-fold ROI via cost savings and increased revenue [10]. B. PAT - It improves the productivity, it exterminates the human intervention as a result upturn the automation, it ensures the operator's safety, it corrects on line the process variation so resultant into elimination of the variability in the process and it creates the data bank and in turn guides for continuous improvement plan [16]. ### Conclusion: - - QbD design the process and the process parameters, However PAT has the capability to monitor and control the process. - So to make an error free robust process the joint role of both QbD and PAT is very significant - Both the QbD and PAT is very imperative to each other in the process. • That is how the QbD and PAT both are playing very significant role in the Pharmaceutical process Automation . ### **ACKNOWLEDGEMENT:** Author wishes to thanks Oman Pharmaceuticals products Co., LLC. for providing library facility and information to carry out this study. ### **REFERENCES:** - Bradley Diehl, Bronwyn Grout, NIR Spectroscopy - Just One of Many Analytical Tools for PAT, Amer. Pharm. Rev. 3, 70-74 (2011). - Frederick T. Mattrey, Sarah Dolman, Jason Nyrop, Peter J. Skrdla, On-line FTIR Monitoring and Simultaneous Optimization of a Strecker Reaction Performed in a Laboratory Scale Flow-Through Reactor, Amer. Pharm. Rev. 14(7) (2011). - 3. Shelly Li, Application of On;ine Reaction Monitoring by Raman and Infrared Spectroscopy in Early Development, Amer. Pharm. Rev. March, 62-67 (2010). - 4. Yong Zhou, Rebecca LoBello, Chunsheng Cai, Nicole Crane, Faiza Poshni, William W. Porter, Sonja S. Sekulic, Howard W. Ward II, Daniel R. Brannegan, Elizabeth D. Stanley, Christine L. Robert P. Cogdill, Carl A. Anderson, James K. Drennen III, Using NIR Spectroscopy as an Integrated PAT Tool, Spectroscopy 19(12), 104-109 (2004). - Phil Borman, Phil Nethercote, Marion Chatfield, Duncan Thompson, Keith Truman, The Application of Quality by Design to Analytical Methods, Pharmaceutical Technology 31, 142 (2007). - Mark Schweitzer, Matthias Pohl, Melissa Hanna-Brown, Phil Nethercote, Phil Borman, Gordon Hansen, Kevin Smith, Jaqueline Larew, Implications and Opportunities of Applying QbD Principles to Analytical Measurements, Pharm. Tech. 34 (2) 52 (2010). - 7. Frederick C Vogt, Alireza S Kord, Development of Quality-by-Design Analytical Methods, J. Pharm. Sci. 100, 797-812 (2011). - 8. Devesh A. Bhatt, Smita I. Rane, QbD Approach to Analytical RP-HPLC Method Development and its Validation, Int. J. Pharm. and Pharm. Sci. 3(1), 179-187 (2011). - Kate Monks, Hans-Jürgen Rieger, Imre Molnár, Expanding the term "Design Space" in high performance liquid chromatography (1), J. Pharm. Biomed. Anal. 56(5), 874-879 (2011). - 10. Frederick G. Vogt, A Multi-Disciplinary Approach to the Solid-State Analysis of Pharmaceuticals, Amer. Pharm. Rev. 11, 50-57 (2008). - 11. Charlotte Eliasson, Neil A. Macleod, Linda C. Jayes, Fiona C. Clarke, Stephen V. Hammond, Mark R. Smith, Pavel Matousek, Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy, J. Pharm. and Biomed. Anal. 47(2), 221-229 (2008). - 12. Marcel Blanco, Manel Bautista, Manel Alcala, Preparing Calibration Sets for Use in Pharmaceutical Analysis by NIR Spectroscopy, J. Pharm. Sci. 97(3) 1236-1245 (2008). San es A - George X. Zhou, Zhihong Ge, Jason Dorwart, Bill Izzo, Joseph Kukura, Gary Bicker, Jean Wyvratt, Determination and Differention of Surface and Bound Water in Drug Substances by Near Infrared Spectroscopy, J. Pharm Sci 92(5) 1058-1065 (2003). - 14. Howard W. Ward, Frank E. Sistare, On-line determination and control of the water content in a continuous conversion reactor using NIR spectroscopy, Anal. Chim. Acta. 595(1-2), 319-22 (2007). - 15. Koji Muteki, Vidya Swaminathan, Sonja S. Sekulic, George L. Reid. De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies, AAPS PharmSci Tech, 12(4), 1324-1334 (2011). - 16. International Conference on Harmonization (ICH) Q8 (R2): Pharmaceutical Development (August 2009).